62 research outputs found

    A Putative Multiple-Demand System in the Macaque Brain.

    Get PDF
    UNLABELLED: In humans, cognitively demanding tasks of many types recruit common frontoparietal brain areas. Pervasive activation of this "multiple-demand" (MD) network suggests a core function in supporting goal-oriented behavior. A similar network might therefore be predicted in nonhuman primates that readily perform similar tasks after training. However, an MD network in nonhuman primates has not been described. Single-cell recordings from macaque frontal and parietal cortex show some similar properties to human MD fMRI responses (e.g., adaptive coding of task-relevant information). Invasive recordings, however, come from limited prespecified locations, so they do not delineate a macaque homolog of the MD system and their positioning could benefit from knowledge of where MD foci lie. Challenges of scanning behaving animals mean that few macaque fMRI studies specifically contrast levels of cognitive demand, so we sought to identify a macaque counterpart to the human MD system using fMRI connectivity in 35 rhesus macaques. Putative macaque MD regions, mapped from frontoparietal MD regions defined in humans, were found to be functionally connected under anesthesia. To further refine these regions, an iterative process was used to maximize their connectivity cross-validated across animals. Finally, whole-brain connectivity analyses identified voxels that were robustly connected to MD regions, revealing seven clusters across frontoparietal and insular cortex comparable to human MD regions and one unexpected cluster in the lateral fissure. The proposed macaque MD regions can be used to guide future electrophysiological investigation of MD neural coding and in task-based fMRI to test predictions of similar functional properties to human MD cortex. SIGNIFICANCE STATEMENT: In humans, a frontoparietal "multiple-demand" (MD) brain network is recruited during a wide range of cognitively demanding tasks. Because this suggests a fundamental function, one might expect a similar network to exist in nonhuman primates, but this remains controversial. Here, we sought to identify a macaque counterpart to the human MD system using fMRI connectivity. Putative macaque MD regions were functionally connected under anesthesia and were further refined by iterative optimization. The result is a network including lateral frontal, dorsomedial frontal, and insular and inferior parietal regions closely similar to the human counterpart. The proposed macaque MD regions can be useful in guiding electrophysiological recordings or in task-based fMRI to test predictions of similar functional properties to human MD cortex

    Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation

    Get PDF
    Publisher’s embargo period: Embargo set on 04.03.2019 by SR (TIS).The causal role of an area within a neural network can be determined by interfering with its activity and measuring the impact. Many current reversible manipulation techniques have limitations preventing their application, particularly in deep areas of the primate brain. Here, we demonstrate that a focused transcranial ultrasound stimulation (TUS) protocol impacts activity even in deep brain areas: a subcortical brain structure, the amygdala (experiment 1), and a deep cortical region, the anterior cingulate cortex (ACC, experiment 2), in macaques. TUS neuromodulatory effects were measured by examining relationships between activity in each area and the rest of the brain using functional magnetic resonance imaging (fMRI). In control conditions without sonication, activity in a given area is related to activity in interconnected regions, but such relationships are reduced after sonication, specifically for the targeted areas. Dissociable and focal effects on neural activity could not be explained by auditory confounds

    Deciphering the genome structure and paleohistory of _Theobroma cacao_

    Get PDF
    We sequenced and assembled the genome of _Theobroma cacao_, an economically important tropical fruit tree crop that is the source of chocolate. The assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of them anchored on the 10 _T. cacao_ chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example flavonoid-related genes. It also provides a major source of candidate genes for _T. cacao_ disease resistance and quality improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten _T. cacao_ chromosomes were shaped from an ancestor through eleven chromosome fusions. The _T. cacao_ genome can be considered as a simple living relic of higher plant evolution

    Physiological Correlates of Volunteering

    Get PDF
    We review research on physiological correlates of volunteering, a neglected but promising research field. Some of these correlates seem to be causal factors influencing volunteering. Volunteers tend to have better physical health, both self-reported and expert-assessed, better mental health, and perform better on cognitive tasks. Research thus far has rarely examined neurological, neurochemical, hormonal, and genetic correlates of volunteering to any significant extent, especially controlling for other factors as potential confounds. Evolutionary theory and behavioral genetic research suggest the importance of such physiological factors in humans. Basically, many aspects of social relationships and social activities have effects on health (e.g., Newman and Roberts 2013; Uchino 2004), as the widely used biopsychosocial (BPS) model suggests (Institute of Medicine 2001). Studies of formal volunteering (FV), charitable giving, and altruistic behavior suggest that physiological characteristics are related to volunteering, including specific genes (such as oxytocin receptor [OXTR] genes, Arginine vasopressin receptor [AVPR] genes, dopamine D4 receptor [DRD4] genes, and 5-HTTLPR). We recommend that future research on physiological factors be extended to non-Western populations, focusing specifically on volunteering, and differentiating between different forms and types of volunteering and civic participation

    An Open Resource for Non-human Primate Imaging.

    Get PDF
    Non-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI). Here, we present the rationale, design, and procedures for the PRIME-DE consortium, as well as the initial release, consisting of 25 independent data collections aggregated across 22 sites (total = 217 non-human primates). We also outline the unique pitfalls and challenges that should be considered in the analysis of non-human primate MRI datasets, including providing automated quality assessment of the contributed datasets

    EuGene-PP: a next generation automated annotation pipeline for prokaryotic genomes.

    No full text
    International audienceIt is now easy and increasingly usual to produce oriented RNA-Seq data as a prokaryotic genome is being sequenced. However, this information is usually just used for expression quantification. EuGene-PP is a fully automated pipeline for structural annotation of prokaryotic genomes integrating protein similarities, statistical information and any oriented expression information (RNA-Seq or tiling arrays) through a variety of file formats to produce a qualitatively enriched annotation including coding regions but also (possibly antisense) non-coding genes and transcription start sites

    Ultrasound Neuromodulation: A Review of Results, Mechanisms and Safety

    No full text
    International audienceUltrasonic neuromodulation is a rapidly growing field, in which low-intensity ultrasound (US) is delivered to nervous system tissue, resulting in transient modulation of neural activity. This review summarizes the findings in the central and peripheral nervous systems from mechanistic studies in cell culture to cognitive behavioral studies in humans. The mechanisms by which US mechanically interacts with neurons and could affect firing are presented. An in-depth safety assessment of current studies shows that parameters for the human studies fall within the safety envelope for US imaging. Challenges associated with accurately targeting US and monitoring the response are described. In conclusion, the literature supports the use of US as a safe, non-invasive brain stimulation modality with improved spatial localization and depth targeting compared with alternative methods. US neurostimulation has the potential to be used both as a scientific instrument to investigate brain function and as a therapeutic modality to modulate brain activity

    White matter tract transcranial ultrasound stimulation, a computational study

    No full text
    Low-intensity transcranial ultrasound stimulation (TUS) is poised to become one of the most promising treatments for neurological disorders. However, while recent animal model experiments have successfully quantified the alterations of the functional activity coupling between a sonicated target cortical region and other cortical regions of interest (ROIs), the varying degree of alteration between these different connections remains unexplained. We hypothesise here that the incidental sonication of the tracts leaving the target region towards the different ROIs could participate in explaining these differences. To this end, we propose a tissue level phenomenological numerical model of the coupling between the ultrasound waves and the white matter electrical activity. The model is then used to reproduce in silico the sonication of the anterior cingulate cortex (ACC) of a macaque monkey and measure the neuromodulation power within the white matter tracts leaving the ACC for five cortical ROIs. The results show that the more induced power a white matter tract proximal to the ACC and connected to a secondary ROI receives, the more altered the connectivity fingerprint of the ACC to this region will be after sonication. These results point towards the need to isolate the sonication to the cortical region and minimise the spillage on the neighbouring tracts when aiming at modulating the target region without losing the functional connectivity with other ROIs. Those results further emphasise the potential role of the white matter in TUS and the need to account for white matter topology when designing TUS protocols
    corecore